Аддитивная 3D-печать металлических моделей далеко не новость. Но для ряда применений создаваемые на 3D-принтерах изделия требуют соблюдения строжайших норм допуска с точностью до сотых и тысячных долей миллиметра. Популярные технологии аддитивной печати не могут обеспечить подобной точности, отчего моделям требуется сложная постобработка. Немецкие учёные нашли возможность довести модель до ума проще и быстрее.
Информация сайта - «scanpin.ru»
Разработанный учеными из Саарского университета в Германии инструмент представляет собой нечто типа зонда с головкой-распылителем в нижней части. Головка распыляет электролит из растворённых в воде солей на поверхность металлической модели, которая требуют дополнительной обработки. Одновременно через зонд и головку пропускаются импульсы высокого напряжения. В результате на поверхности обрабатываемой модели начинают происходить электрохимические процессы, снимающие металл слой за слоем.
Настраивая частоту вибрации головки и регулируя длительность и амплитуду импульсов, можно точно регулировать объём снимаемого металла. Технология испытана на 3D-моделях из стали, титана и алюминия. Точность обработки поверхности составила одну тысячную долю миллиметра. Объёмные металлические модели могут быстро обрабатываться до состояния гладкой поверхности с нужным допуском, что обещает сделать аддитивную печать металлических изделий ещё дешевле и лучше.
Аддитивная 3D-печать металлических моделей далеко не новость. Но для ряда применений создаваемые на 3D-принтерах изделия требуют соблюдения строжайших норм допуска с точностью до сотых и тысячных долей миллиметра. Популярные технологии аддитивной печати не могут обеспечить подобной точности, отчего моделям требуется сложная постобработка. Немецкие учёные нашли возможность довести модель до ума проще и быстрее. Информация сайта - «scanpin.ru» Разработанный учеными из Саарского университета в Германии инструмент представляет собой нечто типа зонда с головкой-распылителем в нижней части. Головка распыляет электролит из растворённых в воде солей на поверхность металлической модели, которая требуют дополнительной обработки. Одновременно через зонд и головку пропускаются импульсы высокого напряжения. В результате на поверхности обрабатываемой модели начинают происходить электрохимические процессы, снимающие металл слой за слоем. Настраивая частоту вибрации головки и регулируя длительность и амплитуду импульсов, можно точно регулировать объём снимаемого металла. Технология испытана на 3D-моделях из стали, титана и алюминия. Точность обработки поверхности составила одну тысячную долю миллиметра. Объёмные металлические модели могут быстро обрабатываться до состояния гладкой поверхности с нужным допуском, что обещает сделать аддитивную печать металлических изделий ещё дешевле и лучше.
Журналист Game File Стивен Тотило (Stephen Totilo) и проверенный инсайдер Том Хендерсон (Tom Henderson) со ссылкой на свои источники рассказали, что Ubisoft отменила...
Издательство Bethesda Softworks и разработчики из Bethesda Game Studios подтвердили планы на проведение прямой трансляции в честь ежегодного Дня Fallout, который...
В конце сентября стало известно, что после неоднократных попыток удовлетворить требования Nvidia к закупаемой памяти типа HBM3E, южнокорейская Samsung Electronics всё же...
Илон Маск (Elon Musk) подписал мировое соглашение с четырьмя бывшими топ-менеджерами Twitter, которые были уволены после покупки им компании в 2022 году. В прошлом году...
Комментарии (0)