До сих пор техническое обслуживание станков в машиностроении требует регулярного осмотра их материально-технической части человеком, что подразумевает определение степени износа вручную. Немецкие учёные предлагают автоматизировать осмотр деталей станков на износ, и поручить это дело ИИ с машинным обучением.
Информация сайта - «scanpin.ru»
Исследователи из Технологического института Карлсруэ (KIT) разработали систему для полностью автоматизированного контроля шарико-винтовых передач (ШВП) в станках. Такие передачи, например, широко используются в станках с числовым программным управлением, и износ шпинделя передачи прямо приведёт к браку. Автоматизированная система определения износа устранит необходимость остановки станков для осмотра и сократит простой оборудования.
Чтобы следить за износом шпинделя ШВП немецкие разработчики встроили камеру и источник света прямо в гайку привода. Камера постоянно делает снимки каждой секции шпинделя и отсылает изображения для анализа искусственным интеллектом. Система сама просигнализирует, когда станок нужно будет остановить для текущего ремонта. До этого момента узел не потребует регулярного планового осмотра, а значит, станок всё это время будет работать.
Учёные обучили алгоритм на тысячах изображений. Это позволило создать модель ИИ, которая по изображению может точно квалифицировать износ шпинделя и отличить, например, грязь или смазку от настоящего дефекта. Износ определяется даже в том случае, если форма деградации шпинделя отличается от ранее обнаруженной. Иными словами, алгоритм обучен определять едва ли не все возможные в природе виды дефектов на шпинделе. Что важно, алгоритм может быть перенесён на другие приложения, тоже связанные с обнаружением дефектов на основе изображений поверхности.
Информация сайта - «scanpin.ru»
Демонстрация разработки состоится с 20 по 24 апреля на выставке Hannover Messe 2020 (это мероприятие с 2018 года вобрало в себя знаменитую мартовскую CeBIT в Ганновере). Пример данной разработки хорошо показывает, как ИИ-алгоритмы могут просто и буднично революционизировать производство.
До сих пор техническое обслуживание станков в машиностроении требует регулярного осмотра их материально-технической части человеком, что подразумевает определение степени износа вручную. Немецкие учёные предлагают автоматизировать осмотр деталей станков на износ, и поручить это дело ИИ с машинным обучением. Информация сайта - «scanpin.ru» Исследователи из Технологического института Карлсруэ (KIT) разработали систему для полностью автоматизированного контроля шарико-винтовых передач (ШВП) в станках. Такие передачи, например, широко используются в станках с числовым программным управлением, и износ шпинделя передачи прямо приведёт к браку. Автоматизированная система определения износа устранит необходимость остановки станков для осмотра и сократит простой оборудования. Чтобы следить за износом шпинделя ШВП немецкие разработчики встроили камеру и источник света прямо в гайку привода. Камера постоянно делает снимки каждой секции шпинделя и отсылает изображения для анализа искусственным интеллектом. Система сама просигнализирует, когда станок нужно будет остановить для текущего ремонта. До этого момента узел не потребует регулярного планового осмотра, а значит, станок всё это время будет работать. Учёные обучили алгоритм на тысячах изображений. Это позволило создать модель ИИ, которая по изображению может точно квалифицировать износ шпинделя и отличить, например, грязь или смазку от настоящего дефекта. Износ определяется даже в том случае, если форма деградации шпинделя отличается от ранее обнаруженной. Иными словами, алгоритм обучен определять едва ли не все возможные в природе виды дефектов на шпинделе. Что важно, алгоритм может быть перенесён на другие приложения, тоже связанные с обнаружением дефектов на основе изображений поверхности. Информация сайта - «scanpin.ru» Демонстрация разработки состоится с 20 по 24 апреля на выставке Hannover Messe 2020 (это мероприятие с 2018 года вобрало в себя знаменитую мартовскую CeBIT в Ганновере). Пример данной разработки хорошо показывает, как ИИ-алгоритмы могут просто и буднично революционизировать производство.
Согласно статистике Omdia, по итогам прошлого года мировой рынок смартфонов достиг максимального объёма продаж с 2021 года, увеличившись на 2 % до 1,25 млрд штук. В...
Последствия разгона никогда не считались производителями центральных процессоров гарантийным случаем, но это не останавливало их в стремлении вести соответствующую...
Команда из Fixit провела разборку трекера AirTag 2, следуя своей традиции изучать каждое новое устройство Apple. Исследование внутренних компонентов подтвердило...
Бум систем ИИ вызвал не только дефицит памяти, но и высокий спрос на ускорители вычислений Nvidia, поэтому для этой компании выгоднее сосредоточиться именно на...
Комментарии (0)