В ЦЕРНе научились имитировать джеты сверхмассивных чёрных дыр — получились как настоящие - «Новости сети»

  • 10:30, 16-июн-2024
  • Новости мира Интернет
  • Gilbert
  • 0

Джеты — струи плазмы — сверхмассивных чёрных дыр хорошо различимы во многих спектрах от гамма-диапазона до видимого. Но это не означает, что учёные в полной мере представляют микрофизику струй. Что на самом деле происходит в облаке летящей с околосветовой скоростью плазмы — это всё ещё загадка, ответ на которую пытаются дать теория и моделирование. Попытку воспроизвести плазменную струю чёрной дыры на Земле совершили физики ЦЕРНа. И у них получилось.



В ЦЕРНе научились имитировать джеты сверхмассивных чёрных дыр — получились как настоящие - «Новости сети»


Художественное представление джета чёрной дыры. Источник изображения: NASA/JPL-Caltech



Для эксперимента учёные воспользовались установкой HiRadMat для бомбардировки материалов высокоэнергетическими пучками протонов. С её помощью обычно исследуются перспективные материалы или компоненты ускорителя. На этот раз учёные были намерены получить струю плазмы в виде электрон-позитронных пар. Считается, что именно такая плазма преобладает в джетах сверхмассивных чёрных дыр. Для этого пучок протонов в количестве 300 млрд частиц с синхротрона направили на мишени из графита и тантала. Удар по мишеням запустил каскад взаимодействий частиц, в результате которого возникло достаточное количество электрон-позитронных пар для поддержания стабильного состояния плазмы.


Энергии протонов было достаточно, чтобы из ядер углерода в графите были высвобождены субатомные частицы пионы. Пионы в свою очередь быстро распадались на гамма-лучи высокой энергии. Затем эти гамма-лучи взаимодействовали с электрическим полем тантала, которое производило пары электронов и позитронов. В ходе тестового запуска было произведено 10 трлн электрон-позитронных пар — этого более чем достаточно, чтобы искусственно созданное облако частиц начало вести себя как настоящая плазма.





Источник изображения: University of Rochester Laboratory for Laser Energetics illustration / Heather Palmer



«Основная идея этих экспериментов заключается в воспроизведении в лаборатории микрофизики астрофизических явлений, таких как струи из чёрных дыр и нейтронных звезд, — рассказали исследователи. — То, что мы знаем об этих явлениях, получено почти исключительно из астрономических наблюдений и компьютерного моделирования, но телескопы не могут по-настоящему исследовать микрофизику, а моделирование требует приближений. Лабораторные эксперименты, подобные этим, являются связующим звеном между этими двумя подходами».


Джеты — струи плазмы — сверхмассивных чёрных дыр хорошо различимы во многих спектрах от гамма-диапазона до видимого. Но это не означает, что учёные в полной мере представляют микрофизику струй. Что на самом деле происходит в облаке летящей с околосветовой скоростью плазмы — это всё ещё загадка, ответ на которую пытаются дать теория и моделирование. Попытку воспроизвести плазменную струю чёрной дыры на Земле совершили физики ЦЕРНа. И у них получилось. Художественное представление джета чёрной дыры. Источник изображения: NASA/JPL-Caltech Для эксперимента учёные воспользовались установкой HiRadMat для бомбардировки материалов высокоэнергетическими пучками протонов. С её помощью обычно исследуются перспективные материалы или компоненты ускорителя. На этот раз учёные были намерены получить струю плазмы в виде электрон-позитронных пар. Считается, что именно такая плазма преобладает в джетах сверхмассивных чёрных дыр. Для этого пучок протонов в количестве 300 млрд частиц с синхротрона направили на мишени из графита и тантала. Удар по мишеням запустил каскад взаимодействий частиц, в результате которого возникло достаточное количество электрон-позитронных пар для поддержания стабильного состояния плазмы. Энергии протонов было достаточно, чтобы из ядер углерода в графите были высвобождены субатомные частицы пионы. Пионы в свою очередь быстро распадались на гамма-лучи высокой энергии. Затем эти гамма-лучи взаимодействовали с электрическим полем тантала, которое производило пары электронов и позитронов. В ходе тестового запуска было произведено 10 трлн электрон-позитронных пар — этого более чем достаточно, чтобы искусственно созданное облако частиц начало вести себя как настоящая плазма. Источник изображения: University of Rochester Laboratory for Laser Energetics illustration / Heather Palmer «Основная идея этих экспериментов заключается в воспроизведении в лаборатории микрофизики астрофизических явлений, таких как струи из чёрных дыр и нейтронных звезд, — рассказали исследователи. — То, что мы знаем об этих явлениях, получено почти исключительно из астрономических наблюдений и компьютерного моделирования, но телескопы не могут по-настоящему исследовать микрофизику, а моделирование требует приближений. Лабораторные эксперименты, подобные этим, являются связующим звеном между этими двумя подходами».

Другие новости


Рекомендуем

Комментарии (0)




Уважаемый посетитель нашего сайта!
Комментарии к данной записи отсутсвуют. Вы можете стать первым!